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Introduction

In this report, the progress we have made on the following projects during

the period of this grant, with particular emphasis on the work carried out since

submitting the semi-annual report in June 1974:

A. Calculation of the energy-density relation for pure neutron matter in the

density range relevant for neutron stars using four different hard-core

potentials.

B. Calculation of the properties of the superfluid state of the neutron component

and the superconducting state of the proton component and the effects of

polarization in neutron star matter.



A. Neutron Matter - Normal State Calculations

Since the preparation of the semi-annual status report, we have been able to

obtain a better method of constrained minimization of energy. This new method gives

energies considerably lower than those reported in the semi annual report. Therefore

we have adopted this method and carried out the full range of calculations for Ohmura-

Morita - Yamada'.(OMY-4), standard hard core (SHC), Reid Hard Core (RIHC) and Hamada-

Johnston (HJ) potentials as outlined in the proposal.

The correlation factor used in our calculation has the following form:

The choice of this three-parameter correlation factor is based on considerable numerical

experience involving the use of two simpler correlation factors; A two-parameter form

(C2) which can be obtained from (C3) by choosing -{ ~Uand a one-parameter form (Cl)

obtained from (C3) when = 0. We have found that when we determine /L in (C.;4

by energy minimization, this is associated with the violation of several of the

conditions discussed in the semi annual report, except in the low-density region. The

additional flexibility of (C2) enables us to extend the region, where the conditions

are satisfied, beyond the low densities. But (C2) turns out to be inadequate in the

moderate to high density region. For example, it.has been found in our earlier nuclear

matter calculation using the SHC potential that in order to extend the region of

validity of the method up to and beyond the region of equilibrium density, we have to

use the three-parameter form (C5). It should also be noted that the magnitude of the

cluster correction 3 relative to progressively diminishes as we moved from (Cl) to

(C2).to (C3) in our calculations. These remarks summarize some important general

features of our numerical experience in neutron matter and symmetrical nuclear matter

calculations.
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The necessary conditions on the radial distribution function as well as other

physically motivated conditions on the trial wave function discussed in the semi

annual report are summarized below for convenience

(IA) (Normalization condition or structure-factor sum rule to
lowest order)

(IB) 03 =0

(II) (So)= 0 (Structure-factor sum rule)

(III) jC() ,0 (Structure-factor inequality)

(IV) 1~( Z4-3 (Coulomb inequality)

(VA) Ig = 0 (Pauli condition averaged over the fermi sea)

(VB) Lb d 0 (Pauli condition for the "average pair")

We recall that some of these are mutually exclusive, if we attempt to impose all of

them exactly on a state-independent correlation factor. However, we may try to choose

a subset of these to be imposed exactly and hope to have the results thus obtained

satisfy the remaining ones approximately. Our objective is to seek the best one

among the various procedures that are possible within this general framework - best,

in the sense that it gives the lowest energy.

In order to obtain a calculational method which is reliable in the high-density

region, we chose to try different procedures first at the density corresponding to

kF -3, 4 j Lusing the OMY-h potential. The difference in the methods is due to

different choices of constraints on the energy minimization, as described below.

Method Al. At each kF, the parameter . in the correlation factor (c,/ ,Lzj r)

is determined by the condition (IA), for every chosen set of values (,~LI , / )

With - ='l thus determined, we find that for a given (, , energy , c' t ~3

exhibits a minimum as a function of )A at some value /j). The two-body approximation

for energy, ( EF t ), also has a minimum with respect to Aat approximately the same

value / . Therefore, we determine /1WI =A7 by minimizing (f - '). The values of



( F, 2) , S(o) and pome other associated quantities defined in the 
semi-

annual report, calculated for various values of 2 with 
= 53k1 are given in

Table A-i. We then plot S(o) as a function of r to determine where S(o)=O.

But, it is seen from Table A-i that S(o) never reaches zero. 
At somewhat lower

densities, - 3, 0 fw-, S(o) crosses over from a negative value to a positive

value at some . At $-- S S, we have to be satisfied with phoosing f- as the

value where S(9) is closest to zero. this value is 1C , 90 - . At thisF , the

other parameters (- and o are redetermined from the condition (IA) and the

minimization of E respectively. In this manner, we arrive at the optimum set of

parameters ( : f o for the correlation factor at each density. For 315 -

and the oAy-4 potential, the optimum set is (1'23Gh 110 {Y 7 . The

corresponding values for energy and other related quantities are entered under

method (Al) in Table A, . We note that c=0.11, iwhich satisfies condition (IV),

namely, the Coulomb inequality. By calculating &(KT for a wide range of r values,

we have also verified that condition (III), namely, the structure-factor inequality,

is satisfied by the optimun correlation factor I ( )J2, y . It also satisfies

the Pauli condition approximately since (IT = 0.011 Finally, the correlation

paraneter .t[=0Oii2 , is sufficiently small indicating goodp convergence, 
especially

since the ratios R. and R 5(0) are also small. Method A2. In this method, condi-.

tion (VA) is used instead of (IA) to determine Y=Y otherwise the procedure in

method AL is followed. For the OMY--4 potential, the results obtained at kh1 3 f5i

using this method are given in Table A-2. We note that the energy obtained by this

method, namely, E= 12 1q M~is higher than the value &=1022 MeVobtained by method

Al. Furthermore, this energy is associated with S(o)=-O.ol compared to S(o)=-,00' 7

for method Al. Therefore method Al is better than method A2.

Method A3. The condition =0 is used to determine Y=-o in this method. (In this

case, 2 tmay be assumed to play the role of the "smallness parameter."). Other-



wise the procedure in the two previous methods is followed. The results given in

Table A-2 for I--,0f3-f and Oty-,Lpotential show that withE = I i 5ttVand S(o)= -O. 0L-2

, this method is better than A2, but still not as good as Al.

We have carried out calculations using two other methods in which the con-

dition determining I is changed to (IB) and (VB) respectively. These also re-

sult in values of E higher than that obtained in method Al and also associated

with a greater degree of violation of the.condition S(o)=O.

The method we adopted in calculating the results reported in this paper is

method A, which is an improvement over method Al, as we shall see below. In Al,

at a given KE, the value of H which minimizes (f+EQ) or E for every chosen

value of I-J is associated with S(o) < 0, except in the very low density region.

However, at that stage of the procedure, we have ignored this violation of the

stracture-factor sum rule, anticipating that J will be adjusted to make S(o)=O.

In studying S(o) as a-function of F; for given ,2 , we have observed the behavior

schematically indicated in figure A-i. The five sketches are for five different

values, of 2 namely , such that li< r 2 l 3 . Our numerical results show

that the region near the first (deeper) minimum in S(o) is associated with ex-

tremely large values of'g and severe violations of all the conditions, except the

one explicitly imposed to determine ' . We are seeking the lowest value of .

consistent with S(o)=o. But clis not an acceptable value of E even though S(o)

is zero there, because of the reasons mentioned above. As the curves (a).through

(e) in figure A-1 indicate, the value of where E is minimum is roughly

the same lbcation where S(o) also has a minimum, which is negative unless J is

sufficiently large. In method Al, we take a high enough value of { to make

S(o)=O, so that the situation in curve (d) is obtained, In general, the energy 6

increases with ,z . In order to see whether we can get a lower value of C than

obtained in method Al, we attempt to determine t by not merely minimizing



but by seeking its minimum consistent with S(o)=o. For the value J2=/i , we see that

this is not possible because (1) we havealready seen that od, is not acceptable and

(2) the only other zero of S(o) occurs at a very high 1 where, once again, the

value of is found to be too large and some of the conditions are violated. (It

may be appropriate here to point out that we have found the following general result

in our numerical calculations using various methods: the coulomb inequality and the

structure-factor inequality along with the conditions that (, T1% and A4J be small would

restrict the parameter space to a region where the difference between the values of

[ and V is not very large. Thus we find, referring to curves (a) through (e) ,

that the zero of S(o) occurring at a very high ~-

and the zero of S(o) ata very small =/ p t are both unacceptable.) Thus

we are forced to go to higher values of f2 . For J= 13 (curve (b), S(o) is zero

at = e.Note that since E( ) is the minimum of ((gl, i( > ).l• Now, if we

go to curve (C) with P-V)g S(o) is zero at two values of J , namdly I and Q~. The

energies are related as . In curve (d), for 1J. =- , S(o) = o

when is 2 and d0, with the relation between the energies, (~yl2) & ). For

values of 4 greater than , S(o) has only the zero'at h =z'2 , Since the second

minimum in S(o) is already on the positive side and it becomes more positive with

increasing VJ. This situation is illustrated in curve (e).

Thus, in method A, for each , we are determining K by minimizing E subject

to the condition, S(o) =o, The remaining task is to find the minimum of j in the

range of values spanned by G( ,(~) and w(q4) which are all consistent with the

structure-factor sum rule. At some densities we find that the minimum of F(')occurs

when 1 0 . At others, E(a,)is the minimum of E(/4) . At still other densities the

value of at which (I4)is lowest lies between o, and 014. Denoting this minimizing

value by J/ , we have (0 , O ) for the optimum set of parameters, where MO is

the value of at which e(,I) has the lowest value consistent with S(o)=o, as

the alueof at wich ) r
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explained above. The results for ( tj o ) and the associated quantities at

kF = 3.5 fm-1 obtained using the OMY-4 potential are given in table A-2. We note

the significant improvement in the results over those from method Al, especially in

the value of energy, namely, E = 722.5 MIev compared to E= 1022 Mev from method Al.

The results from the calculation for the OMY-4 potential using method A for the

entire density range 0.25 fm -  kFS 5.00 fm are given in table A-3. The values

of ~ determined by this method are plotted against the density parameter kF in figure

A-2. The most notable feature of the (k ) curve is the occurrence of a local mini-
-F1

mum near kF = 1.75 fm
-I

and the discontinuity in the slope of(kF ) near kF = 1.30 fm-I. The energies at all

densities, except in the very low density region, determined by our constrained mini-

mization procedure have come out much higher than the results obtained by other authors.

The convergence of the cluster series for energy and other associated quantities appears

to be excellent judging from the data in table A-5. One of the most important aspects

of our method that emerge from these results is the crucial role played by the structure

factor sum rule in achieving this convergence. It is also responsible forraising the

energies to such high values. For example, if the condition s(o) = o is ignored, at

kF = 1.5 fm-L, we will get 1 = 13 Mev compared to 2 = 25 Mev we have in table A-3, for

the OMY-4 potential. This effect, of course, becomes more pronounced at higher

densities. Thus the answer to the question whether the energies given by method A are

reliable depends crucially on the justification for the central importance we have

assigned to the structure-factor sum rule. (We may also point out here that once S(o)

=o is imposed in the manner we have done in method A, S(k)2: o is always automatically

satisfied. Choosing one of the other zeroes of S(o) leads to a violation of S(k)>O

for some range of k values and, associated with this., to large values of , except in

the very low density region, where a straightforward minimization of L(Vl,, / X,) with

respect to:' and /,Lyields a minimum. that is consistent with all the conditions.)

Since our method is variational, it may be contended that



our high values of energy may constitute only a poor upper bound to the true energy.

In reply to this criticism, we can only say that our numerical experience as summarized

in this report suggests that this is the lowest energy we can obtain for-our choice

of constraints with the three-parameter correlation factor (C3). We also note that

the constraints chosen in method A ;are not arbitrary, but have been justified by the

physical. arguments referred to in the original proposal and by the numerical evidence

for their central role in obtaining apparently rapid convergence of the energy series

and the associated cluster expansions.

The results from the various methods we have attempted indicate that any one of

the conditions (IA), (IB), (VA) and (VB) tend to make the correlation parameter 3

small. But we also find that smallness off by itself does not assure the convergence

of the cluster expansions. Only if the smallness of g is accompanied by the satis-

faction of S(k) o, it seems possible to obtain over-all convergnece. In spite of

this statement, still plays a useful role as an ordering parameter for cluster

expansions in the CBF formalism. We have repeated our calculation at kF = 5.5 fm-

for OLY-4 potential using method Al, omitting the term E7 from the expression for 23

The energy obtained in this way is higher than the value ('= 1022 Mev given in table

A-2. We recall that S is a (reducible) four-body correlation term whereas all

other terms in 5 contain the effects of (irreducible) three-body correlations. If

we are to use the "number of bodies" to classify various orders in the cluster series,

we must exclude 6 from F . But, according to the - classification scheme,

is of the same order as the other terms consLitutinge3 and hence must be included in

F3. Hence the numerical results mentioned above seem to justify the use of gas an

ordering parameter for cluster expansions.

The energy per particle of neutron matter calculated using the SHCI, RHC and HJ

potentials are given in figures A-3, A-4, and A-5 respectively. These also show local
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minima and discontinuity in slope as we have seen for the OMY-4 potential. 
We

cannot yet attach any physical significance to these nonmonotonic regions 
of the

curve for the following reason. The parameter values in the correlation factor

vary significantly.with density in these regions as seen from table 
A-3 for the

case of the OMY-4 potential. It is possible that when perturbation corrections AC

are calculated using these optimum correlatinn factors, the final result, namely,

F +E2 + E3 ) +L when plotted against k,, may not have such local minima or

discontinuities in its slope. When AE is calculated on the basis of a

convergent perturbation expansion, if it is found that the final energy-density

curve still displays these features, then only we can consider these as possible

indications of phase transitions.

In the meantime, we also need to look critically at our choice of the structure

factor-sum rule, namely S(o) = o, as a vital constraint in the energy minimization.

In particular, we need to assure ourselves that it is realistic to impose that

condition on a short range correlation factor and that the raising of energies 
caused

by it is not an artificial effect. We want to emphasize, however, that we have given

some physical arguments that justify the use of-this condition and also the fact that

it definitely helps to obtain better convergence of the cluster expansions in our

formalism.
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B. Effects of Polarization on Neutron Star Matter

The final numerical work on this preliminary study 
of this subject has been

completed. We plan to present a paper on this subject 
at the APS meeting to be held

in Washington, D. C. next April.

We have completed the following additional calculations 
since our last semi-

annual report:

1. The three-particle contributions to the normal state energy 
(per particle)

in the density region interested to us has been 
carefully checked out.

They are as following:

At density (expressed the three particle

in term of kF (fm-1)) contributions, E3 (MeV)

0.25 
0.0000

0.50 
-0.0012

1.00 -0.0858

These numerical results for normal state indicate that the three-particle 
con-

tributions in the density region interested to us are indeed 
sufficient small as

compared to their corresponding single and .two particle 
contributions to the. energy ex-

pectation value. That leads us to believe that the three-particle 
contributions

to the energy expectation value is ngligible as compared with the single-and two-

particle contributions in the superfluid state 
because of the same cluster ex-

pansion employed in both cases.

b. The numerical accuracy of the condensation energy calculations 
were tested by

changing our computer programs for those calculation from the 12-point Gaussian

integral to the 20-point Gaussian integral for 
the enhanced factor f = 1.50 for

the calculations mentioned in our last annual report (see Table -- 2).
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The results are as following:

at density, kF (fm- 1 ) c ( V)
12-PT. G. I. 20-pt. G. I. Difference

0.60
2.0695 2.0642 0.0053

0.96 1.1047 1.1095 0.0048

Thus the numerical evaluations for condensation energies are reliable up to the

third place after decimal point (the difference is less than one-half of one percent).

3. In addition to the numerical results given in the last two reports, we have

made the following two sets of calculations to complete our preliminary study

of this subject:

(a) The condensation energy is calculated in such a way that it has the effect

of incorporating polarization prior to the short range correlations and

superfluidity. Numerically, the condensation energy, 8c, is calculated

by using the optimal energy gap, Ak, for each given enlhanced'factor (3

in both ec and c, but only the Aa in Pk is multiplied bye. The

results are given in Table (B-l) for enhanced factor = 1.20, 1.50 and

1.40.

(b) The condensation energy is calculated in such a way that it has the

effect of incorporating the short range correlations and superfluidity

prior to polarization. Numerically, the condensation energy, , is

calculated by = EC+ c (i.e. the whole 6Lin PkR is enhanced by the

factor p). The results are given in Table (B-2) for enhanced factor

Q= 1.15, 1.20, 1.50 and 1.40.

The results of Table (B-l) of this report and Table (B-2) of the last annual report

all seem to indicate that the polarization effect indeed enhances the condensation



19

energy and the gap function and there is a tendency of the neutron star matter to

undergo a first-order phase transition at a relatively lower density region

(1012-1015 gm-cm-3 ). This preliminary study reaffirms the necessity and interest

of a first principle theory study of the problem.



Table (B-)

In this set of calculations, the condensationenergy, C is calculated by using the pim for each corresponding in both and , but only the ~,ih
P is multiplied by t E

(3- I.0 r 1.30 1.40

I ecitC. e Es

(we) (x!6o 3 (CMeV) __V) (Mie1V) x o V-r (MeV) (MeV) (MeV) (It- jFv ) MeV Cfev) (IVev) (&ioziv-f-'9(eV)

0.24 0.0477 0.606 1.157 -0.551 -0.026 1.695 2.516 -1.910 -0.091 2.517 4.199 -3.593 -0.171 3.559

0.36 0.1576 1.253 1.55 -0.102 -0.016 2.634 2.706 -1.455 -0.229 3.576 4.458 -3.205 -0.505 4.667

0.48 0.5735 2.050 1.+27 0.623 0.233 3.508 2.489 -0.439 -0.164 4.548 4.016 -1.966 -0.694 5.726

0.60 0.7295 2.960 1,562 1,598 1.166 4.153 25316 0.644 0.470 5.304 3.586 -0.626 -0.457 6.608

0.72 1.2506 3.990 1.171 2.819 3.525 4.489 1.992 1.998 2.499 5.750 3.070 0.920 1.151 7.116

0.84 2.0018 5.150 0.938 4,212 8.432 4.440 1.643 3.507 7.020 5.803 2.566 2.584 5.173 7.265

0.96 2.9881 6.450 0. 15 5.755 17.137 35937 1.504 5.146 15.577 5.375 2.085 4.365 13.043 6.919

1.08 4.2545 7.935 0.420 7.515 31.973 3.005 0.881 7.054 30.011 . 4.457 1.507 6.428 27.348 6.025

1.20 5.8361 9.655 0. 76 9.479 55.320 1.790 0.467 9.188 53.622 3.098 0.940 8.715 50.862 4.643

1.32 7.7680 11.650 0.000 11.650 90.497 0,070 0.144 11.506 89,379 1.588 0.402 11.248 87.374 2.874

REPRODUCCIBILITY OF THE
i'ORIGINAL PAGE IS POO4
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Table (B-2)

In this set of calculations, the condensation energy, e, is calculated by = , +B (i.e. the whole 4jin P is enhanced by the factorP)

_ _ . 0_ 130 .40

4- O.
6 ' L } (Me V) &le V) -ic V-f 3) (4le V) (M4eV) (1V/eVfx9 ____________________

0.24 0.0477 0.606 0.71 0.335 0.016 0.323 0.283 0,014 0.428 0,178 0.009 0.533 0.073 0.004

0.36 0.1576 1.253 0. 18 0.835 0.132 0.479 0.774 0.122 0.599 0.654 0.103 0.720 0.533 0.084

0.48 0.3735 2.050 0.496 1.554 0.580 0.562 1.488 0.556 0.695 1.355 0.506 0.831 1.219 0.455-

0.60 0.7295 2.960 0.4 86 2.474 1.805 0.546 2.414 1.761 0.667 2.293 1.673 '0.788 2.172 1.584

0.72 1.2506 3.990 0.362 3.628 4.537 0,410 3.580 4.477 0.504 3.486 4.358 0.598 3.392 4.242

0.84 2.0018 5.150 0.219 4.931 9.871 0.249 4.901 9.811 0,308 4.842 9.693 0.368 4.782 9.573

0.96 2.9881 6.450 0.-32 6.318 18.879 0.146 6.304 18.837 0.175 6.275 18.750 0.201 6.246 18.664

1.08 4.2545 7.935 o.634 7.901 33.615 0..038. 7.897 33598 0.048 7.887 33.555 0.057 7.878 33.517

1.20 5.8361 9.655 0.601 9.654 56.342 i002 9.653 56.336 0.002 9.653 56.336 0.002 9.653 56.336

1.32 7.7680 11.650 0.o00 11.650 90.497 0.000 11.650 90.497 0.000 11.650 90.497 0.000 11.650 90.497

k RERODUCIBILITY OF TI~I

ORIGINAL PAGE IS POO k
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